Financial Management

Friday 7 June 2013

|||||||||||||||||||||||||

```
Time allowed
Reading and planning: 15 minutes
Writing:
3 hours
```

ALL FOUR questions are compulsory and MUST be attempted.
Formulae Sheet, Present Value and Annuity Tables are on pages 6, 7 and 8.

Do NOT open this paper until instructed by the supervisor.
During reading and planning time only the question paper may be annotated. You must NOT write in your answer booklet until instructed by the supervisor.

This question paper must not be removed from the examination hall.

The Association of Chartered Certified Accountants

ALL FOUR questions are compulsory and MUST be attempted

1 HDW Co is a listed company which plans to meet increased demand for its products by buying new machinery costing $\$ 5$ million. The machinery would last for four years, at the end of which it would be replaced. The scrap value of the machinery is expected to be 5% of the initial cost. Capital allowances would be available on the cost of the machinery on a 25% reducing balance basis, with a balancing allowance or charge claimed in the final year of operation.

This investment will increase production capacity by 9,000 units per year and all of these units are expected to be sold as they are produced. Relevant financial information in current price terms is as follows:

		Forecast inflation
Selling price	$\$ 650$ per unit	$4 \cdot 0 \%$ per year
Variable cost	$\$ 250$ per unit	$5 \cdot 5 \%$ per year
Incremental fixed costs	$\$ 250,000$ per year	$5 \cdot 0 \%$ per year

In addition to the initial cost of the new machinery, initial investment in working capital of $\$ 500,000$ will be required. Investment in working capital will be subject to the general rate of inflation, which is expected to be $4 \cdot 7 \%$ per year.

HDW Co pays tax on profits at the rate of 20% per year, one year in arrears. The company has a nominal (money terms) after-tax cost of capital of 12% per year.

Required:

(a) Calculate the net present value of the planned purchase of the new machinery using a nominal (money terms) approach and comment on its financial acceptability.
(14 marks)
(b) Discuss the difference between a nominal (money terms) approach and a real terms approach to calculating net present value.
(5 marks)
(c) Identify TWO financial objectives of a listed company such as HDW Co and discuss how each of these financial objectives is supported by the planned investment in new machinery.

2 AMH Co wishes to calculate its current cost of capital for use as a discount rate in investment appraisal. The following financial information relates to AMH Co:

Financial position statement extracts as at 31 December 2012

Equity	$\$ 000$	$\$ 000$
Ordinary shares (nominal value 50 cents)	4,000	
Reserves	18,000	22,000
Long-term liabilities	3,000	
4% Preference shares (nominal value \$1)	3,000	
7\% Bonds redeemable after six years	1,000	7,000 Long-term bank loan
		29,000

The ordinary shares of AMH Co have an ex div market value of $\$ 4 \cdot 70$ per share and an ordinary dividend of $36 \cdot 3$ cents per share has just been paid. Historic dividend payments have been as follows:

Year	2008	2009	2010	2011
Dividends per share (cents)	$30 \cdot 9$	$32 \cdot 2$	$33 \cdot 6$	$35 \cdot 0$

The preference shares of AMH Co are not redeemable and have an ex div market value of 40 cents per share. The 7% bonds are redeemable at a 5% premium to their nominal value of $\$ 100$ per bond and have an ex interest market value of $\$ 104.50$ per bond. The bank loan has a variable interest rate that has averaged 4% per year in recent years.

AMH Co pays profit tax at an annual rate of 30% per year.

Required:

(a) Calculate the market value weighted average cost of capital of AMH Co.
(b) Discuss how the capital asset pricing model can be used to calculate a project-specific cost of capital for AMH Co, referring in your discussion to the key concepts of systematic risk, business risk and financial risk.
(c) Discuss why the cost of equity is greater than the cost of debt.

3 TGA Co, a multinational company, has annual credit sales of $\$ 5 \cdot 4$ million and related cost of sales are $\$ 2 \cdot 16$ million. Approximately half of all credit sales are exports to a European country, which are invoiced in euros. Financial information relating to TGA Co is as follows:

	$\$ 000$	$\$ 000$
Inventory	$473 \cdot 4$	
Trade receivables	$\underline{1,331 \cdot 5}$	$1,804 \cdot 9$
Trade payables	$\underline{177 \cdot 5}$	
Overdraft	$\underline{1,326 \cdot 6}$	$\underline{1,504 \cdot 1}$
Net working capital		$\underline{300 \cdot 8}$

TGA Co plans to change working capital policy in order to improve its profitability. This policy change will not affect the current levels of credit sales, cost of sales or net working capital. As a result of the policy change, the following working capital ratio values are expected:

Inventory days	50 days
Trade receivables days	62 days
Trade payables days	45 days

Other relevant financial information is as follows:
Short-term dollar borrowing rate 5\% per year
Short-term dollar deposit rate 4\% per year
Assume there are 365 days in each year.

Required:

(a) For the change in working capital policy, calculate the change in the operating cycle, the effect on the current ratio and the finance cost saving. Comment on your findings.
(b) Discuss the key elements of a trade receivables management policy.
(c) Explain the different types of foreign currency risk faced by a multinational company.
(d) TGA Co expects to receive $€ 500,000$ from export sales at the end of three months. A forward rate of $€ 1.687$ per $\$ 1$ has been offered by the company's bank and the spot rate is $€ 1.675$ per $\$ 1$. TGA Co can borrow short term in the euro at 9% per year.

Required:

Calculate the dollar income from a forward market hedge and a money market hedge, and indicate which hedge would be financially preferred by TGA Co.

4 GXG Co is an e-business which designs and sells computer applications (apps) for mobile phones. The company needs to raise $\$ 3,200,000$ for research and development and is considering three financing options.

Option 1
GXG Co could suspend dividends for two years, and then pay dividends of 25 cents per share from the end of the third year, increasing dividends annually by 4\% per year in subsequent years. Dividends in recent years have grown by 3\% per year.

Option 2
GXG Co could seek a stock market listing, raising $\$ 3 \cdot 2$ million after issue costs of $\$ 100,000$ by issuing new shares to new shareholders at a price of $\$ 2.50$ per share.

Option 3
GXG Co could issue $\$ 3,200,000$ of bonds paying annual interest of 6%, redeemable after ten years at par.
Recent financial information relating to GXG Co is as follows:

	$\$ 000$
Operating profit	3,450
Interest	200
Profit before taxation	3,250
Taxation	650
Profit after taxation	2,600
Dividends	1,600
	$\$ 000$
Ordinary shares (nominal value 50 cents)	5,000

Under options 2 and 3, the funds invested would earn a before-tax return of 18% per year.
The profit tax rate paid by the company is 20% per year.
GXG Co has a cost of equity of 9% per year, which is expected to remain constant.

Required:

(a) Using the dividend valuation model, calculate the value of GXG Co under option 1, and advise whether option 1 will be acceptable to shareholders.
(6 marks)
(b) Calculate the effect on earnings per share of the proposal to raise finance by a stock market listing (option 2), and comment on the acceptability of the proposal to existing shareholders.
(c) Calculate the effect on earnings per share and interest cover of the proposal to raise finance by issuing new debt (option 3), and comment on your findings.
(d) Discuss the factors to be considered in choosing between traded bonds, new equity issued via a placing and venture capital as sources of finance.

Formulae Sheet

Economic order quantity

$$
=\sqrt{\frac{2 C_{0} D}{C_{h}}}
$$

Miller-Orr Model

Return point $=$ Lower limit $+\left(\frac{1}{3} \times\right.$ spread $)$
Spread $=3\left[\frac{\frac{3}{4} \times \text { transaction cost } \times \text { variance of cash flows }}{\text { interest rate }}\right]^{\frac{1}{3}}$
The Capital Asset Pricing Model

$$
\mathrm{E}\left(\mathrm{r}_{\mathrm{i}}\right)=\mathrm{R}_{\mathrm{f}}+\beta_{\mathrm{i}}\left(\mathrm{E}\left(\mathrm{r}_{\mathrm{m}}\right)-\mathrm{R}_{\mathrm{f}}\right)
$$

The asset beta formula

$$
\beta_{\mathrm{a}}=\left[\frac{\mathrm{V}_{\mathrm{e}}}{\left(\mathrm{~V}_{\mathrm{e}}+\mathrm{V}_{\mathrm{d}}(1-\mathrm{T})\right)} \beta_{\mathrm{e}}\right]+\left[\frac{\mathrm{V}_{\mathrm{d}}(1-\mathrm{T})}{\left(\mathrm{V}_{\mathrm{e}}+\mathrm{V}_{\mathrm{d}}(1-\mathrm{T})\right)} \beta_{\mathrm{d}}\right]
$$

The Growth Model

$$
P_{0}=\frac{D_{0}(1+g)}{\left(r_{e}-g\right)}
$$

Gordon's growth approximation

$$
g=b r_{e}
$$

The weighted average cost of capital

$$
\text { WACC }=\left[\frac{V_{e}}{V_{e}+V_{d}}\right] k_{e}+\left[\frac{V_{d}}{V_{e}+V_{d}}\right] k_{d}(1-T)
$$

The Fisher formula

$$
(1+i)=(1+r)(1+h)
$$

Purchasing power parity and interest rate parity

$$
S_{1}=S_{0} \times \frac{\left(1+h_{c}\right)}{\left(1+h_{b}\right)} \quad F_{0}=S_{0} \times \frac{\left(1+i_{c}\right)}{\left(1+i_{b}\right)}
$$

Present Value Table

Present value of 1 i.e. $(1+r)^{-n}$
Where $r=$ discount rate
$\mathrm{n}=$ number of periods until payment
Discount rate (r)
Periods

(n)	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	
1	0.990	0.980	0.971	0.962	0.952	0.943	0.935	0.926	0.917	0.909	1
2	0.980	0.961	0.943	0.925	0.907	0.890	0.873	0.857	0.842	0.826	2
3	0.971	0.942	0.915	0.889	0.864	0.840	0.816	0.794	0.772	0.751	3
4	0.961	0.924	0.888	0.855	0.823	0.792	0.763	0.735	0.708	0.683	4
5	0.951	0.906	0.863	0.822	0.784	0.747	0.713	0.681	0.650	0.621	5
6	0.942	0.888	0.837	0.790	0.746	0.705	0.666	0.630	0.596	0.564	6
7	0.933	0.871	0.813	0.760	0.711	0.665	0.623	0.583	0.547	0.513	7
8	0.923	0.853	0.789	0.731	0.677	0.627	0.582	0.540	0.502	0.467	8
9	0.914	0.837	0.766	0.703	0.645	0.592	0.544	0.500	0.460	0.424	9
10	0.905	0.820	0.744	0.676	0.614	0.558	0.508	0.463	0.422	0.386	10
11	0.896	0.804	0.722	0.650	0.585	0.527	0.475	0.429	0.388	0.350	11
12	0.887	0.788	0.701	0.625	0.557	0.497	0.444	0.397	0.356	0.319	12
13	0.879	0.773	0.681	0.601	0.530	0.469	0.415	0.368	0.326	0.290	13
14	0.870	0.758	0.661	0.577	0.505	0.442	0.388	0.340	0.299	0.263	14
15	0.861	0.743	0.642	0.555	0.481	0.417	0.362	0.315	0.275	0.239	15

(n)	11%	12%	13%	14%	15%	16%	17%	18%	19%	20%	
1	0.901	0.893	0.885	0.877	0.870	0.862	0.855	0.847	0.840	0.833	1
2	0.812	0.797	0.783	0.769	0.756	0.743	0.731	0.718	0.706	0.694	2
3	0.731	0.712	0.693	0.675	0.658	0.641	0.624	0.609	0.593	0.579	3
4	0.659	0.636	0.613	0.592	0.572	0.552	0.534	0.516	0.499	0.482	4
5	0.593	0.567	0.543	0.519	0.497	0.476	0.456	0.437	0.419	0.402	5
6	0.535	0.507	0.480	0.456	0.432	0.410	0.390	0.370	0.352	0.335	6
7	0.482	0.452	0.425	0.400	0.376	0.354	0.333	0.314	0.296	0.279	7
8	0.434	0.404	0.376	0.351	0.327	0.305	0.285	0.266	0.249	0.233	8
9	0.391	0.361	0.333	0.308	0.284	0.263	0.243	0.225	0.209	0.194	9
10	0.352	0.322	0.295	0.270	0.247	0.227	0.208	0.191	0.176	0.162	10
11	0.317	0.287	0.261	0.237	0.215	0.195	0.178	0.162	0.148	0.135	11
12	0.286	0.257	0.231	0.208	0.187	0.168	0.152	0.137	0.124	0.112	12
13	0.258	0.229	0.204	0.182	0.163	0.145	0.130	0.116	0.104	0.093	13
14	0.232	0.205	0.181	0.160	0.141	0.125	0.111	0.099	0.088	0.078	14
15	0.209	0.183	0.160	0.140	0.123	0.108	0.095	0.084	0.074	0.065	15

Annuity Table

Present value of an annuity of 1 i.e. $\frac{1-(1+r)^{-n}}{r}$

$$
\begin{array}{ll}
\text { Where } & r=\text { discount rate } \\
& n=\text { number of periods }
\end{array}
$$

Discount rate (r)
Periods

(n)	1\%	2\%	3\%	4\%	5\%	6\%	7\%	8\%	9\%	10\%	
1	0.990	0.980	0.971	0.962	0.952	0.943	0.935	0.926	0.917	0.909	1
2	1.970	1.942	1.913	1.886	1.859	1.833	1.808	1.783	1.759	1.736	2
3	2.941	$2 \cdot 884$	2.829	$2 \cdot 775$	$2 \cdot 723$	$2 \cdot 673$	$2 \cdot 624$	$2 \cdot 577$	2.531	$2 \cdot 487$	3
4	3.902	3.808	$3 \cdot 717$	3.630	3.546	3.465	$3 \cdot 387$	$3 \cdot 312$	3.240	$3 \cdot 170$	4
5	$4 \cdot 853$	$4 \cdot 713$	4.580	$4 \cdot 452$	$4 \cdot 329$	$4 \cdot 212$	4•100	3.993	3.890	$3 \cdot 791$	5
6	$5 \cdot 795$	$5 \cdot 601$	$5 \cdot 417$	$5 \cdot 242$	5.076	4.917	$4 \cdot 767$	$4 \cdot 623$	$4 \cdot 486$	$4 \cdot 355$	6
7	$6 \cdot 728$	6.472	6.230	6.002	$5 \cdot 786$	$5 \cdot 582$	$5 \cdot 389$	$5 \cdot 206$	5.033	$4 \cdot 868$	7
8	$7 \cdot 652$	7.325	7.020	6.733	$6 \cdot 463$	$6 \cdot 210$	5.971	$5 \cdot 747$	$5 \cdot 535$	$5 \cdot 335$	8
9	8.566	$8 \cdot 162$	7.786	7.435	$7 \cdot 108$	$6 \cdot 802$	6.515	$6 \cdot 247$	5.995	$5 \cdot 759$	9
10	9.471	8.983	8.530	$8 \cdot 111$	$7 \cdot 722$	$7 \cdot 360$	$7 \cdot 024$	$6 \cdot 710$	6.418	$6 \cdot 145$	10
11	$10 \cdot 368$	9.787	$9 \cdot 253$	$8 \cdot 760$	8.306	7.887	7.499	$7 \cdot 139$	6.805	6.495	11
12	$11 \cdot 255$	$10 \cdot 575$	9.954	$9 \cdot 385$	$8 \cdot 863$	8.384	7.943	7.536	$7 \cdot 161$	6.814	12
13	$12 \cdot 134$	$11 \cdot 348$	$10 \cdot 635$	9.986	$9 \cdot 394$	8.853	8.358	7.904	7.487	$7 \cdot 103$	13
14	13.004	$12 \cdot 106$	11.296	$10 \cdot 563$	9.899	9.295	$8 \cdot 745$	8.244	7.786	$7 \cdot 367$	14
15	13.865	$12 \cdot 849$	11.938	$11 \cdot 118$	$10 \cdot 380$	$9 \cdot 712$	$9 \cdot 108$	8.559	8.061	$7 \cdot 606$	15
(n)	11\%	12\%	13\%	14\%	15\%	16\%	17\%	18\%	19\%	20\%	
1	0.901	0.893	0.885	0.877	0.870	0.862	0.855	0.847	0.840	0.833	1
2	1.713	1.690	1.668	$1 \cdot 647$	1.626	1.605	1.585	1.566	1.547	1.528	2
3	$2 \cdot 444$	$2 \cdot 402$	$2 \cdot 361$	$2 \cdot 322$	$2 \cdot 283$	$2 \cdot 246$	$2 \cdot 210$	$2 \cdot 174$	$2 \cdot 140$	$2 \cdot 106$	3
4	$3 \cdot 102$	3.037	$2 \cdot 974$	$2 \cdot 914$	$2 \cdot 855$	$2 \cdot 798$	$2 \cdot 743$	$2 \cdot 690$	$2 \cdot 639$	$2 \cdot 589$	4
5	$3 \cdot 696$	3.605	3.517	3.433	3.352	3.274	$3 \cdot 199$	$3 \cdot 127$	3.058	2.991	5
6	$4 \cdot 231$	4-111	3.998	3.889	3.784	3.685	3.589	3.498	3.410	$3 \cdot 326$	6
7	$4 \cdot 712$	4.564	$4 \cdot 423$	$4 \cdot 288$	$4 \cdot 160$	4.039	3.922	3.812	3.706	$3 \cdot 605$	7
8	$5 \cdot 146$	4.968	4.799	$4 \cdot 639$	$4 \cdot 487$	4.344	$4 \cdot 207$	$4 \cdot 078$	3.954	3.837	8
9	$5 \cdot 537$	$5 \cdot 328$	$5 \cdot 132$	4.946	$4 \cdot 772$	4.607	$4 \cdot 451$	4.303	4.163	4.031	9
10	$5 \cdot 889$	$5 \cdot 650$	$5 \cdot 426$	$5 \cdot 216$	5.019	$4 \cdot 833$	$4 \cdot 659$	4.494	$4 \cdot 339$	4.192	10
11	$6 \cdot 207$	5.938	$5 \cdot 687$	$5 \cdot 453$	5.234	5.029	4.836	4.656	$4 \cdot 486$	$4 \cdot 327$	11
12	6.492	6.194	5.918	$5 \cdot 660$	$5 \cdot 421$	$5 \cdot 197$	$4 \cdot 988$	4.793	$4 \cdot 611$	$4 \cdot 439$	12
13	6.750	$6 \cdot 424$	$6 \cdot 122$	$5 \cdot 842$	5.583	$5 \cdot 342$	$5 \cdot 118$	4.910	$4 \cdot 715$	4.533	13
14	6.982	6.628	$6 \cdot 302$	6.002	$5 \cdot 724$	$5 \cdot 468$	$5 \cdot 229$	5.008	4.802	$4 \cdot 611$	14
15	$7 \cdot 191$	$6 \cdot 811$	$6 \cdot 462$	$6 \cdot 142$	$5 \cdot 847$	$5 \cdot 575$	$5 \cdot 324$	5.092	$4 \cdot 876$	$4 \cdot 675$	15

End of Question Paper

