24周年

财税实务 高薪就业 学历教育
APP下载
APP下载新用户扫码下载
立享专属优惠
安卓版本:8.6.90 苹果版本:8.6.90
开发者:北京东大正保科技有限公司
应用涉及权限:查看权限>
APP隐私政策:查看政策>

MATERIALS MIX AND YIELD VARIANCES 3

来源: 正保会计网校 编辑: 2016/08/26 18:48:46 字体:

ACCA F5考试知识点讲解

Further variance analysis where several materials are used

The fact that most products will be comprised of several, or sometimes hundreds of different materials, leads us back to the more detailed materials mix and yield variances that can be calculated in these instances. In many industries, particularly where the product being made undergoes a chemical process, it may be possible to combine different levels of the component materials to make the same product. This, in turn, may result in differing yields, dependent on the mix of materials that has been used. Note, when we talk about the materials ‘mix’ we are referring to the quantity of each material that is used to make our product ie we are referring to our inputs. When we talk about ‘yield’, on the other hand, we are talking about how much of our product is produced, ie our output.

Materials mix variance

In any process, much time and money will have been spent ascertaining the exact optimum mix of materials. The optimum mix of materials will be the one that balances the cost of each of the materials with the yield that they generate. The yield must also reach certain quality standards. Let us take the example of a chemical, C, that uses both chemicals A and B to make it. Chemical A has a standard cost of $20 per litre and chemical B has a standard cost of $25 per litre. Research has shown that various combinations of chemicals A and B can be used to make C, which has a standard selling price of $30 per litre. The best two of these combinations have been established as:

Mix 1: 10 litres of A and 10 litres of B will yield 18 litres of C; and

Mix 2: 8 litres of A and 12 litres of B will yield 19 litres of C.

Assuming that the quality of C produced is exactly the same in both instances, the optimum mix of materials A and B can be decided by looking at the cost of materials A and B relative to the yield of C.

Mix 1: (18 x $30) – (10 x $20) – (10 x $25) = $90 contribution

Mix 2: (19 x $30) – (8 x $20) – (12 x $25) = $110 contribution

Therefore, the optimum mix that minimises the cost of the inputs compared to the value of the outputs is mix 2: 8/20 material A and 12/20 material B. The standard cost per unit of C is (8 x $20)/19 + (12 x $25)/19 = $24.21. However, if the cost of materials A and B changes or the selling price for C changes, production managers may deviate from the standard mix. This would, in these circumstances, be a deliberate act and would result in a materials mix variance arising. It may be, on the other hand, that the materials mix changes simply because managers fail to adhere to the standard mix, for whatever reason.

我要纠错】 责任编辑:小莹子

免费试听

  • Jessie《FR 财务报告》

    Jessie主讲:《FR 财务报告》免费听

  • 张宏远《MA 管理会计》

    张宏远主讲:《MA 管理会计》免费听

  • 何 文《SBL 战略商业领袖》

    何 文主讲:《SBL 战略商业领袖》免费听

限时免费资料

  • 近10年A考汇总

    历年样卷

  • 最新官方考试大纲

    考试大纲

  • 各科目专业词汇表

    词汇表

  • ACCA考试报考指南

    报考指南

  • ACCA考官文章分享

    考官文章

  • 往年考前串讲直播

    思维导图

回到顶部
折叠
网站地图

Copyright © 2000 - www.chinaacc.com All Rights Reserved. 北京东大正保科技有限公司 版权所有

京ICP证030467号 京ICP证030467号-1 出版物经营许可证 京公网安备 11010802023314号

正保会计网校